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Abstract

This paper extends the analysis of in�nite dimensional vector autoregressive (IVAR) models

proposed in Chudik and Pesaran (2011) to the case where one of the variables or the cross

section units in the IVAR model is dominant or pervasive. It is an important extension from

empirical as well theoretical perspectives. In the theory of networks a dominant unit is the

centre node of a star network and arises as an e¢ cient outcome of a distance-based utility

model. Empirically, the extension poses a number of technical challenges that goes well beyond

the analysis of IVAR models provided in Chudik and Pesaran. This is because the dominant

unit in�uences the rest of the variables in the IVAR model both directly and indirectly, and

its e¤ects do not vanish as the dimension of the model (N) tends to in�nity. The dominant

unit acts as a dynamic factor in the regressions of the non-dominant units and yields an in�nite

order distributed lag relationship between the two types of units. Despite this it is shown that

the e¤ects of the dominant unit as well as those of the neighborhood units can be consistently

estimated by running augmented least squares regressions that include distributed lag functions

of the dominant unit and its neighbors (if any). The asymptotic distribution of the estimators

is derived and their small sample properties investigated by means of Monte Carlo experiments.
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1 Introduction

The econometric theory of vector autoregressive (VAR) models is well developed when the dimen-

sion of the model (N) is small and �xed whilst the number of time series observations (T ) is large

and expanding. This framework, however, is not satisfactory for many empirical applications where

both dimensions N and T are large. Prominent examples include modelling of regional and national

interactions, the panel data analysis of a large number of �rms or industries over time. It is clear

that without restrictions the parameters of the VAR model can not be consistently estimated in

cases where N is relatively large, since in such cases the number of unknown parameters grows at

a quadratic rate in N .

To circumvent this �curse of dimensionality�, several techniques have been suggested in the

literature. These can be broadly characterized as: (i) data shrinkage, and (ii) parameter shrinkage.

Factor models are examples of the former (see Geweke (1977), Sargent and Sims (1977), Forni and

Lippi (2001), Forni et al. (2000), and Forni et al. (2004)). Spatial models, pioneered by Whittle

(1954), and further developed by Cli¤ and Ord (1973), Anselin (1988), and Kelejian and Robinson

(1995), and Bayesian type restrictions (e.g. Doan, Litterman, and Sims (1984)) are examples of

the latter.

Chudik and Pesaran (2011) propose an alternative solution to the curse of dimensionality based

on an a priori classi�cation of the units into neighbors and non-neighbors.1 Neighbors could

be individual units or, more generally, linear combinations of the units (such as spatial or local

averages). Based on this classi�cation the coe¢ cients corresponding to the non-neighboring units

in the in�nite dimensional VAR (IVAR) model are restricted to vanish in the limit as N ! 1,
whereas the neighborhood e¤ects are left unrestricted. Such limiting restrictions on the parameters

of the VAR model turns out to be equivalent to data shrinkage as N ! 1. Chudik and Pesaran
(CP) show that the properties of the IVAR model depend crucially on the degree of cross section

dependence in the IVAR model. In the case where such dependencies are weak (in the sense

formalized by Chudik, Pesaran, and Tosetti (2011)), CP establish that the IVAR model de-couples

into separate individual regressions that can be estimated consistently. They also consider the case

where the cross section units are strongly correlated, but con�ne their analysis to situations where

the source of strong cross section dependence is external to the model and originates from a �nite

number of exogenously given common factors. For the latter case they propose a cross sectionally

augmented least squares (CALS) estimator that they show to be consistent and asymptotically

normal.

The present paper extends the analysis of CP to the case where one of the cross section units in

the IVAR model is dominant or pervasive, in the sense that its direct or indirect e¤ects on the rest of

the system can lead to strong cross section dependence. An important example is the role of the US

in the global economy. It is clear that in a multi-country analysis the US macro variables are likely

to have pervasive e¤ects on other variables in the global economy, considering that the US economy

1 In this paper we assume that the network formation that underlies the classi�cation of the units into neighbors
and non-neighbors is given exogenously. However, recent theoretical developments in the analysis of economic and
social networks can be used to relax this assumption, although such a task is beyond the scope of the present paper.
Jackson (2008) provides a recent account of this literature.
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accounts for more than a quarter of world output and has strong links to all major �nancial and

capital markets. See, for example, Pesaran, Schuermann, and Weiner (2004). The dominance of the

US economy raises not only the question of how to model the US macroeconomic variables, but also

how to model the remaining economies. Another example could be the modelling of house prices

in di¤erent regions in the UK, where developments in London tend to have widespread e¤ects on

all other regions. See, for example, Holly, Pesaran, and Yamagata (2011) for a recent application.

In the literature on social and economic networks, the star network represents an important

example of a model with a dominant unit where all units are indirectly connected to each other

through a single (dominant) unit at the center of the network. Such networks naturally arise as

e¢ cient outcomes of the distance-based utility model where costs of establishing links relative to

bene�ts from the links fall in an intermediate range. See, for example, Proposition 6.1 in Jackson

(2008).

Allowing for a dominant unit in the IVAR model is clearly important, but to date little is known

about the estimation of such models. This paper contributes to the literature in this direction by:

(i) deriving large N representations of cross section units, (ii) investigating the identi�cation of

parameters in such systems, and (iii) deriving asymptotic distribution of the proposed augmented

least squares (ALS) estimators. This extension is not straightforward and involves several technical

di¢ culties. The dominant unit in�uences the rest of the variables in the IVAR model both directly

and indirectly, and its e¤ects do not vanish as the dimension of the model (N) tends to in�nity. The

dominant unit acts as a dynamic factor in the regressions of the non-dominant units and induces

in�nite order distributed lag relations between the dominant and non-dominant units. Nevertheless,

it is shown that the e¤ects of the dominant unit as well as those of the neighborhood units can

be consistently estimated by running ALS regressions that include distributed lag functions of the

dominant unit. The asymptotic distribution of the estimators is derived and their small sample

properties investigated by means of Monte Carlo experiments.

The remainder of this paper is organized as follows. Section 2 sets up the IVAR model with a

dominant unit. Section 3 derives in�nite order moving average or autoregressive approximations for

the cross section units and discusses the conditions under which the IVAR model yields a dynamic

factor model with the dominant unit acting as the factor. Section 4 considers the identi�cation

problem. The asymptotic distribution of the ALS estimator is derived in Section 5. Section 6

extends the analysis to the case where neighborhood e¤ects and as well as a dominant unit are

present. Section 7 allows for unobserved common factors. Section 8 investigates �nite sample

properties of the ALS estimator by means of Monte Carlo experiments. Section 9 provides some

concluding remarks. Proofs and other technical details are given in the Appendix.

Notations: kAk1 � max
1�j�N

PN
i=1 jaij j denotes the column matrix norm of the N �N matrix A,

kAk1 � max
1�i�N

PN
j=1 jaij j is the row matrix norm of A. kAk =

p
% (A0A) is the spectral norm

of A; where % (A) = j�1 (A)j is the spectral radius of A, and �1 (A) is the largest eigenvalue (in
absolute value) of A.2 All vectors are column vectors. The ith row of A with its ith element

replaced by a 0 is denoted by a0�i = (ai1; ai2; :::; ai;i�1; 0; ai;i+1; :::; ai;N ). The ith row of A with

2Note that if x is a vector, then kxk =
p
% (x0x) =

p
x0x corresponds to the Euclidean length of vector x.
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its �rst and ith elements replaced by 0 is denoted by a0�1;�i = (0; ai2; :::; ai;i�1; 0; ai;i+1; :::; ai;N ).

a1 = (a11; a21; :::; aN1)
0 denotes the �rst column of A. A matrix constructed fromA by replacing its

�rst column by a column vector of zeros is denoted as A�1. kxtkLp is Lp-norm of a random variable
xt, de�ned as (E jxtjp)1=p. an = O(bn) denotes that the deterministic sequence fang is at most of
order bn. xn = Op (yn) states that random variable xn is at most of order yn in probability. R is
the set of real numbers, N is the set of natural numbers, and Z is the set of integers. Convergence
in distribution and convergence in probability are denoted by d! and

p!, respectively. Convergence
in quadratic mean, and convergence in L1 norm are denoted by

q:m:! and
L1!, respectively. We use

K and � to denote positive real numbers that do not vary with N and/or T . (N;T )
j!1 denotes

joint asymptotics in N and T; with N and T !1, in no particular order.

2 The IVAR Model with a Dominant Unit

Suppose we have T time series observations on N cross section units indexed by i 2 S(N) �
f1; ::; Ng � N. Both dimensions, N and T , are assumed to be large. For each point in time, t,

and for each N 2 N, the N cross section observations are collected in the N dimensional vector,

x(N);t =
�
x(N);1t; x(N);2t; :::; x(N);Nt

�0, and it is assumed that x(N);t follows the VAR(1) model
x(N);t = �(N)x(N);t�1 + u(N);t, (1)

where �(N) is an N � N matrix of unknown coe¢ cients and u(N);t is an N � 1 vector of error
terms. To distinguish high dimensional VAR models from the standard speci�cations we refer to

the sequence of VAR models (1) of growing dimensions (N !1) as the in�nite dimensional VARs
or IVARs for short.3 The extension of the IVAR(1) to the pth order IVAR model where p is �xed,

is relatively straightforward and will not be attempted in this paper.

The explicit dependence of the variables and the parameters of the IVAR model on N is sup-

pressed in the remainder of the paper to simplify the notations, but it will be understood that

in general they vary with N , unless stated otherwise. In what follows we shall also focus on the

problem of estimation of the parameters of individual units in (1). In particular, we consider the

equation for the ith unit that we write as

xit =
NX
j=1

�ijxj;t�1 + uit; for t = 1; 2; :::; T: (2)

Clearly, it is not possible to estimate all the N coe¢ cients �ij , j = 1; ::; N , when N and T grow

at the same rate, unless suitable restrictions are placed on some of the coe¢ cients. One such

3The sequence of models obtained from (1) for di¤erent values of N is compatible with both cases where
cov

�
x(N);it; x(N);jt

�
changes with N or is invariant to N . We allow for both possibilities since in some applica-

tions the covariance between individual units could change with the inclusion of a new unit - as it is likely to be the
case when modelling �rms or assets within expanding markets. For further details see Chudik and Pesaran (2011).
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restriction is the �cross section absolute summability condition�,

NX
j=1

���ij�� < K for any N 2 N and any i 2 f1; ::; Ng , (3)

which ensures that the variance of xit conditional on information available at time t � `, for any

�xed ` > 0, exits for all N and as N !1. The Lasso and Ridge shrinkage methods also use similar
constraints.4 Condition (3) implies that many of the coe¢ cients are in�nitesimal (as N ! 1).
However, assuming a mere existence of an upper bound K in (3) need not be su¢ cient to deal

with the dimensionality problem and we impose additional restrictions below. We follow CP and

suppose that in addition to (3), that for each i 2 N it is possible to divide the units into �neighbors�
and �non-neighbors�. But depart from CP by allowing one of the units, which we take to be the

�rst unit without loss of generality, to be dominant or pervasive in the sense to be made precise

below. Also given our focus, to simplify the analysis initially we set the neighborhood e¤ects that

do not relate to the dominant unit to zero. This restriction is relaxed in Section 6.5

ASSUMPTION 1 (Coe¢ cient matrix �)
(a) (Dominant unit) There exists a constant K < 1 (independent of i and N) such that

j�iij < K, j�i1j < K, for all i 2 N, and

NX
i=1

j�i1j = O (N) . (4)

(b) (Neighbors) There are no other neighbors other than the dominant unit which is a potential

neighbor to all other units.

(c) (Non-neighbors) There exists a constant K <1 such that the coe¢ cients corresponding to

non-neighbors satisfy ��11 = max
j2f2;::;Ng

���1j�� < K

N
, (5)

and ��1;�i1 = max
j2f2;::;Ngrfig

���ij�� < K

N
, (6)

for any N 2 N and any i 2 f2; 3; :::; Ng, where ��1 = (0; �12; �13; :::; �1N )0 and
��1;�i =

�
0; �i2; :::; �i;i�1; 0; �i;i+1; ::; �iN

�0.
The division of units in Assumption 1 imposes su¢ cient constraints that allows us to tackle the

dimensionality problem. Consider the problem of estimating the unknown coe¢ cients �ii and �i1.

4These �data mining�methods attempt at estimating all the unknown coe¢ cients of the ith equation, �ij , j =
1; ::; N , by minimizing

PT
t=1 u

2
it subject to

PN
j=1

���ij�� � K (Lasso) or
PN

j=1 �
2
ij � K (Ridge). But the outcome,

perhaps not surprisingly, only yields a relatively small number of non-zero estimates. See Chapter 3.4.3 of Hastie,
Tibshirani, and Friedman (2001) for detailed descriptions of Lasso and Ridge regression shrinkage methods.

5 In a dynamic sense the lagged value of the ith unit can also be viewed as the ith neighbor, but we shall use the
terminology of �neighbors�for other units only.

5



We have

xit = �iixi;t�1 + �i1x1;t�1 +
X
j 6=1;i

�ijxj;t�1 + uit, (7)

for i = 2; 3; :::; N , and the estimation of the coe¢ cients �ii and �i1 depends on the stochastic

behavior of the cross section average
P
j 6=1;i �ijxj;t�1, which captures the aggregate spatiotemporal

impact of non-neighbors. CP shows that if fxitg is cross sectionally weakly dependent, then the
aggregate impact of non-neighbors

q:m:! 0 as N !1 and therefore ignoring the non-neighbors would

not be a problem for estimation of �ii. However, in our set-up, the unit 1 can potentially have a

large impact on any of the remaining N � 1 units and therefore fxitg could be cross sectionally
strongly dependent. In the case of strong cross section dependence, the aggregate impact of non-

neighbors is Op (1), and it will not be possible to consistently estimate the coe¢ cients �ii and �i1by

ignoring the non-neighborhood e¤ects.

The coe¢ cients in the �rst column of matrix � correspond to the direct lagged impact of unit

1 on the rest of the system. The pervasive nature of unit 1 is characterized by (4), and represents

an important departure from the set up in CP, where the in�uence of any of the cross section units

on the rest of the system is restricted such that k�k < K. In this paper k�k is allowed to be
unbounded in N , but only through the dominant e¤ects of unit 1.

Similar considerations also apply to contemporaneous dependence of the units through the error

terms, ut = (u1t; u2t; :::; uNt)0. Let

ut = R"t; (8)

where R is the N �N matrix of non-stochastic coe¢ cients, and "t = ("1t; "2t; :::; "Nt)
0 is an N � 1

vector of random variables. This formulation is quite general and includes all models of spatial

dependence considered in the literature, where it is assumed that R has bounded row and column

matrix norms.6 In the assumption below we relax this condition and allow for the sum of the

coe¢ cients in the �rst column of R to be unbounded in N .

ASSUMPTION 2 (Error terms and contemporaneous dominance) The contemporaneous depen-
dence of the errors ut = (u1t; u2t; :::; uNt)

0 in (1) is characterized by (8), where the individual

elements of the double index array f"it; i 2 N; t 2 Zg are distributed with mean 0, �nite variances,
and �nite fourth moments uniformly bounded in i 2 N, and "it is independently distributed from
"i0t0 for any (i; t) 6= (i0; t0). Consider the decomposition of R

R = r1s
0
1 +R�1; (9)

where r1 = (r11; r21; ::::; rN1)
0 is the �rst column of R, s1 is an N � 1 selection vector, s1 =

(1; 0; :::; 0)0, and R�1 is obtained from R by replacing its �rst column with a vector of zeros. Assume

that rii = 1 for all i 2 N (without the loss of generality) and that there exists a constant K < 1
(independent of i and N) such that

V ar ("it) = �2"i < K, (10)

6See Pesaran and Tosetti (2011) for further details.
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kR�1k1 < K, kR�1k1 < K, (11)

and

kr�1k1 = max
j2f2;::;Ng

jr1j j <
K

N
, (12)

for any N 2 N, where r�1 = (0; r12; r13; :::; r1N )0 is the N � 1 column vector constructed from the

�rst row of R�1. In addition, jri1j < K, for all i 2 N, and

NX
i=1

jri1j = O (N) . (13)

Under this assumption the error of the �rst cross section unit acts as a (static) common factor

for the rest of the units. Condition (13) allows for the �rst cross section unit to have a dominant

e¤ect on all the other cross section units. The boundedness of R�1 ensures that no other cross

section units has a dominant e¤ect on the rest of the units.

The above set up can be generalized to two or more dominant units so long as the number

of such units is �xed and does not change with N . In this paper we focus on IVAR models with

one dominant unit and assume that the dominant unit is known a priori. The problem of how to

identify dominant units will be outside the scope of the present paper.

3 Large N Representations

The presence of a dominant unit in the IVAR model considerably complicates the analysis. This

is because the e¤ects of the dominant unit show up in all other units both contemporaneously as

well as being distributed over time in the form of in�nite order moving average or autoregressive

representations. For empirical analysis it is important that conditions under which such in�nite

order processes can be well approximated by time series models with a �nite number of unknown

parameters are met. To this end we introduce a number of further assumptions restricting the

behavior of � and R for a �nite N as well as when N !1.

ASSUMPTION 3 (Starting values and stationarity) Available observations are x0;x1; :::;xT with
x0 =

P1
`=0�

`u (�`), and there exists a real positive constant � < 1 (independent of N) such that
for any N 2 N

j�1 (�)j � �. (14)

ASSUMPTION 4 (Bounded variances and invertibility of large N ARMA representations) Sim-

ilarly to (9) let

� = �1s
0
1 +��1; (15)

where ��1 is obtained from � by replacing its �rst column with a column of zeros and �1 is the

�rst column of �. Assume that there exists a real positive constant � < 1 (independent of N) such

that for any N 2 N :
k��1k1 � �, k��1k1 � �, (16)
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and

k�1k1 = max
1�i�N

j�i1j � �. (17)

Furthermore,

max i2N jri1j � 1. (18)

Remark 1 Condition (14) of Assumption 3 is a well known su¢ cient condition for covariance
stationarity for any �xed N 2 N. This condition, however, is not su¢ cient for V ar(xit) to remain
bounded as N ! 1. As shown in Chudik and Pesaran (2011), k�k � � < 1 would be su¢ cient

for bounded variances (as N ! 1), but in our set-up k�k is unbounded due to the presence of
a dominant unit in the IVAR model. Assumption 4 provides additional su¢ cient conditions for

bounded variances (as N ! 1) and also for the existence of an invertible large N AR(1) and
MA(1) processes for the dominant unit.

Using the notations introduced in Assumptions 2 and 4 (see equations (9) and (15)), model (1)

can be written as

xt =
�
�1s

0
1 +��1

�
xt�1 +

�
r1s

0
1 +R�1

�
"t,

= �1x1;t�1 +��1xt�1 + r1"1t + et, (19)

where

et = R�1"t. (20)

Solving for xt by backward substitution yields

xt = ��1 (L)�1x1;t�1 +��1 (L) r1"1t + �t, (21)

where

��1 (L) =
1X
`=0

�`�1L
`, (22)

and

�t = ��1 (L) et. (23)

Lemma 1 Suppose Assumption 2-4 hold. Then for any N � 1 vector a satisfying condition kak =
O
�
N�1=2� we have

V ar
�
a0�t

�
= O

�
N�1� ,

where �t is de�ned by (23).

Lemma 1 establishes that �t is cross sectionally weekly dependent (CWD), and in particular

a0�t = Op
�
N�1=2� for any vector a satisfying kak = O

�
N�1=2�. For the non-dominant units, i > 1,

using (21) we have

xit = di (L)x1;t�1 + bi (L) "1t + �it, (24)
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where �it = s0i�t,

di (L) = s
0
i��1 (L)�1; (25)

bi (L) = s
0
i��1 (L)�1; (26)

and si is an N � 1 dimensional selection vector with sij = 0 for j 6= i and sii = 1. In the case of

the dominant unit (i = 1) equation (21) yields,

c (L)x1t = b1 (L) "1t + �1t, (27)

where

b1 (L) =

1X
`=0

�
s01�

`
�1r1

�
L`, (28)

c (L) = 1� �11L� �0�1��1 (L)�1L2, (29)

and �1t = s01�t. Note that �1t can be written as

�1t =
1X
`=0

s01�
`
�1et�` = e1t +

1X
`=1

s01�
`
�1et�`

= e1t + s
0
1��1

1X
`=1

�`�1�1 et�`:

But s01��1 = �
0
�1; and

1X
`=1

�`�1�1 et�` =
1X
`=0

�`�1et�`�1 = �t�1:

Hence

�1t = e1t + �
0
�1�t�1: (30)

Also it is easily seen that e1t = s01R�1"t = r
0
�1"t; and �t�1 =

P1
`=1�

`�1
�1 R�1"t�`, where both of

these composite variables have zero means and are uncorrelated. Therefore

V ar (�1t) = V ar
�
r0�1"t

�
+ V ar

�
�0�1�t�1

�
= O

�
N�1� , (31)

where

V ar
�
r0�1"t

�
;= r0�1V ar ("t) r�1 � kr�1k

2 kV ar ("t)k ,

kr�1k2 � kr�1k1 kr�1k1 = O
�
N�1� by (12) of Assumption 2 , kV ar ("t)k < K by condition (10)

of Assumption 2, and V ar
�
�0�1�t�1

�
= O

�
N�1� follows from Lemma 1 by setting a = ��1 and

noting that
��1 �q��11 ��11 = O

�
N�1=2� by condition (5) of Assumption 1. Therefore,

since E (�1t) = 0, then

�1t = Op

�
N�1=2

�
, (32)
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and equation (27) can be written as

c (L)x1t = b1 (L) "1t +Op

�
N�1=2

�
, (33)

which is a large N ARMA(1;1) representation of the process for the dominant unit.
The next lemma establishes invertibility of polynomials b1 (L) and c (L).

Lemma 2 Suppose Assumption 4 holds. Then inverses of the polynomials b1 (L) and c (L), de�ned
by (28) and (29), respectively, exist for any N 2 N, and coe¢ cients of polynomials b�11 (L) and

c�1 (L) decay at an exponential rate uniformly in N . Also, there exist real positive constants K <1
and � < 1 such that

ja`j < K�`, for any ` 2 f0; 1; 2; :::g and any N 2 N, (34)

where

a (L) =

1X
`=0

a`L
` = b�11 (L) c (L) . (35)

It is worth noting that conditions k��1k1 � � < 1 and k�1k1 � � < 1 of Assumption 4 are

su¢ cient to ensure that c (L) is invertible and the coe¢ cients of c�1 (L) decay exponentially. On

the other hand conditions k��1k1 � � < 1 and maxi2N jri1j � 1, are su¢ cient in ensuring that

b1 (L) is invertible and the coe¢ cients of b�11 (L) decay exponentially. The exponential decay of the

coe¢ cients in these polynomials will be relevant for the selection of truncation lags in empirical

applications as discussed below.

3.1 Large N AR and MA representations for the dominant unit

Multiplying both sides of (27) by b�11 (L) we obtain

a (L)x1t = "1t + #bt, (36)

where #bt = b�11 (L) �1t. By Lemma 2 the coe¢ cients of b�11 (L) decay exponentially and hence are

absolute summable, and in view of (31) we have

V ar (#bt) = O
�
N�1� . (37)

Also since E (#bt) = 0, it follows that

#bt = b�11 (L) �1t = Op

�
N�1=2

�
. (38)

Using this result in (36) yields the following large N AR(1) representation for the dominant unit,

a (L)x1t = "1t +Op

�
N�1=2

�
. (39)
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Similarly, multiplying both sides of (27) by c�1 (L) we obtain

x1t = a�1 (L) "1t + #ct, (40)

where a�1 (L) = c�1 (L) b1 (L), and #ct = c�1 (L) �1t. Using similar arguments as in derivation of

(37)

V ar (#ct) = O
�
N�1� , (41)

and since E (#ct) = 0, then

#ct = c�1 (L) �1t = Op

�
N�1=2

�
; (42)

and we have the following large N MA(1) representation for x1t,

x1t = a�1 (L) "1t +Op
�
N�1=2

�
. (43)

3.2 Large N representation for the non-dominant units i > 1

Consider now the equation for unit i > 1. Using (1) we have (noting that uit = ri1"1t + eit)

xit = �iixi;t�1 + �
0
�1;�ixt�1 + �i1x1;t�1 + ri1"1t + eit. (44)

Multiplying both sides of (21) by �0�1;�i yields

�0�1;�ixt = �
0
�1;�i��1 (L)�1x1;t�1 + �

0
�1;�i��1 (L) r1"1t + �

0
�1;�i�t. (45)

Substituting (45) in (44) and using (27) to eliminate "1t from (44) we have

xit = �iixi;t�1 + �i (L)x1t + eit + �it, (46)

where

�i (L) = �i1L+ �
0
�1;�i��1 (L)�1L

2 +
�
ri1 + �

0
�1;�i��1 (L) r1L

�
a (L) , (47)

and

�it = �
0
�1;�i�t�1 �

�
ri1 + �

0
�1;�i��1 (L) r1L

�
#bt. (48)

Taking L2-norm of (48) and using triangle inequality we obtain

k�itkL2 �
�0�1;�i�t�1L2 + �ri1 + �0�1;�i��1 (L) r1L�#btL2 . (49)

But under condition (6) in Assumption 1, we have
��1;�i1 = O

�
N�1� uniformly in i 2 f2; 3; :::g,

which implies that
��1;�i = O

�
N�1=2�, and it follows from Lemma 1 (by setting a = ��1;�i)

that

V ar
�
�0�1;�i�t�1

�
= O

�
N�1� , uniformly in i 2 f2; 3; :::g ,
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and since E (�t) = 0, then�0�1;�i�t�1L2 = O
�
N�1=2

�
, uniformly in i 2 f2; 3; :::g . (50)

Also by (37) and noting that the coe¢ cients of �0�1;�i��1 (L) r1 decay exponentially to zero uni-

formly in i 2 f2; 3; :::g (see proof of Lemma 3 below) and E (#bt) = 0, we have�ri1 + �0�1;�i��1 (L) r1L�#btL2 = O
�
N�1=2

�
, uniformly in i 2 f2; 3; :::g . (51)

Using (50) and (51) in (49) and noting that E (�it) = 0, we have

V ar (�it) = k�itk2L2 = O
�
N�1� , uniformly in i 2 f2; 3; :::g , (52)

and

�it = Op

�
N�1=2

�
, uniformly in i 2 f2; 3; :::g : (53)

Hence, the large N representation of the process for the non-dominant unit i > 1 is given by

xit = �iixi;t�1 + �i (L)x1t + eit +Op
�
N�1=2

�
. (54)

The following proposition summarizes the main results derived in this section.

Proposition 1 Let Assumptions 1-4 hold. Then, as N ! 1, the dominant unit i = 1 can be

modelled on its own as in�nite AR or MA process and its large N AR and MA representations

are given by (39) and (43), respectively. Large N representation for other units, i > 1, is given by

(54), in which the dominant unit acts as an observed dynamic common factor.

It is valid to exclude the contemporaneous values of x1t from (54) if and only if ri1 = 0; for i > 1.

However, x1;t�1 enters the regression equation for the ith unit even if ri1 = �i1 = 0. Note also that

in general the polynomial �i (L) is of in�nite order, and the errors, eit; are serially uncorrelated

but cross sectionally weakly dependent. The following lemma establishes that the coe¢ cients in

the polynomial �i (L) decline at a geometric rate (uniformly in i).

Lemma 3 Suppose Assumption 4 holds. Then there exist real positive constants K < 1 and

0 < � < 1 such that

j�i`j < K�` for any ` 2 f0; 1; 2; :::g , any N 2 N and any i 2 f1; 2; :::; Ng , (55)

where �i` is de�ned by the coe¢ cients of polynomial �i (L) =
P1
`=0 �i`L

` in (47).

3.3 Large N representation for cross section averages

Cross section averages can also be used to capture the e¤ects of the dominant unit, which acts as

an observable common factor in the large N representation for the non-dominant units. Pesaran

and Chudik (2011) show in the context of high dimensional VARs that the components with weak

12



cross section dependence do not survive the cross section aggregation of a large number of units.

Since the dominant unit in this section is the only source of strong cross section dependence, it is

not surprising that there should be a relationship between the dominant unit, x1t, and the cross

section averages, xwt = w0xt, where w is any weight vector satisfying the following granularity

conditions:

kwk = O
�
N� 1

2

�
, (56)

wi
kwk = O

�
N� 1

2

�
for any i. (57)

A simple example of granular weights are equal weights wi = N�1 for i = 1; 2; :::; N . In order to

derive the relationship between the cross section averages and the dominant unit, multiply equation

(21) by w0 to obtain

xwt = w
0��1 (L)�1x1;t�1 +w

0��1 (L) r1"1t +w
0�t, (58)

in which w0�t = Op
�
N�1=2� by Lemma 1. Now substituting equation (36) for "1t and noting that

w0��1 (L) r1#bt = Op
�
N�1=2�, we obtain

xwt = 'w (L)x1t +Op

�
N�1=2

�
, (59)

where

'w (L) = w
0��1 (L)�1L+

�
w0��1 (L) r1

�
a (L) , (60)

and a(L) is given by (35). Equation (59) shows that, as N !1, xwt can be written as a distributed
lag function of x1t, and if 'w (L) is invertible, then the dominant unit, x1t; can be approximated

arbitrarily well by the cross section averages and their lags. Therefore, augmentation by cross

section averages to take account of the e¤ects of strong cross section dependence for the estimation

of the dynamic coe¢ cients �ii, for i > 1, should be asymptotically equivalent to the augmentation

by the dominant unit and its lags. This equivalence property is also investigated in Monte Carlo

experiments below. The idea of using cross section averages to take into account the e¤ects of

strong cross section dependence was originally proposed by Pesaran (2006) in the context of large

heterogenous panels with unobserved common factors.

4 Identi�cation

Note that the �rst two coe¢ cients in �i(L) =
P1
`=0 �i`L

`, as de�ned by (47), are (for i = 2; 3; ::::; N)

�i0 = ri1, (61)

and

�i1 = �i1 + ri1a1 + �
0
�1;�ir1a0 = �i1 � ri1

�
�0�1r1 + �11

�
+ �0�1;�ir1. (62)
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Also using c (L) =
P1
`=0 c`L

` and b1 (L) =
P1
`=0 b1`L

` given by (29) and (28), respectively, we

have,

c0 = 1; c1 = ��11; and b10 = 1; b11 = �0�1r1:

Hence, (using a (L) in (35)) we have

a0 = 1, a1 = ��11 � �0�1r1, (63)

The higher order lag coe¢ cients, �i` and a` for ` = 2; 3; :::, in general depend on all elements of �

and r1 and can be obtained similarly.

Result (61) shows that the contemporaneous e¤ects of the dominant unit on the rest of the

units, ri1; for i > 1, can be identi�ed from �i0, which can be consistently estimated using the

unit-speci�c ALS regressions speci�ed below. The own-lag e¤ects of the non-dominant units, �ii
(for i > 1), can also be consistently estimated.

But due to the feedback e¤ects from non-dominant units, the own-lag e¤ect of the dominant

unit, �11, cannot be identi�ed from a1. To see this from (63) we note that �11 = �a1 + �0�1r1,
where �0�1r1 = �Ni=2�1iri1, maxi>1 j�1ij < KN�1, and the coe¢ cients ri1, i > 1, are �xed in N .

Hence �0�1r1 is O(1) and does not vanish as N ! 1. Using the parameters from the large N

representation for the non-dominant units we are able to identify ri1. But due to the non-negligible

lagged e¤ects from the non-dominant units on the dominant unit, the parameters �1i, for i > 1 can

not be identi�ed when N !1. As a result a consistent estimate of �Ni=2�1iri1 can not be obtained.
Consequently, �11 is not identi�ed when N ! 1. Accordingly, in the Monte Carlo experiments
below, we shall only consider the estimation of �i0 and �ii.

5 Asymptotic Distribution of the Augmented Least Squares Esti-

mator

5.1 Speci�cation of Augmented Regressions

Based on the large N representation, (39), for the dominant unit, and the representation (54) for

the non-dominant units (i > 1), we consider the following regressions:

xit = g
0
it�i + �it, for i = 1; 2; :::; N , (64)

where

git =

(
(x1;t�1; x1;t�2; :::; x1;t�m)

0 , for i = 1

(xi;t�1; x1t; x1;t�1; :::; x1;t�m)
0 for i > 1

, (65)

�i =

(
� (a1; a2; :::; am)0 , for i = 1

(�ii; �i0; �i1; :::; �im)
0 for i > 1

, (66)

�it =

(
 m1t + #bt + "1t, for i = 1

 mit + �it + eit for i > 1
, (67)
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and

 mit =

(
�
P1
`=m+1 a`x1;t�`, for i = 1P1
`=m+1 �i`x1;t�` for i > 1

. (68)

Note that there are m regressors (and m unknown coe¢ cients) in the regression for the dominant

unit i = 1, and m+ 2 regressors in the regressions for the non-dominant units, i > 1.

The error term �it in (67) is decomposed into three parts. The �rst term,  mit, is due to the

truncation of the in�nite order lag polynomials a (L) in the case of the dominant unit, and �i (L),

for i > 1. Since the coe¢ cients in these polynomials are absolutely summable, we have

 mit
q:m:! 0, as m!1,

for any N 2 N, any i 2 f1; 2; :::; Ng and any t 2 f1; 2; :::; Tg. The second terms, #bt (in the case
of the dominant unit), and �it, for i > 1 , are Op

�
N�1=2�. (See (38) and (53)). These terms arise

from aggregation of weak dependencies in the individual-speci�c equations of the IVAR model, (1).

The third term in (67) are serially uncorrelated errors, with "1t being orthogonal to eit for any

i > 1. Also as noted above, eit is a cross sectionally weakly dependent process and as such ignoring

it does not adversely impact the consistency of the estimators to be proposed here.

For future references, let

hit =

( �
�1;t�1; �1;t�2; :::; �1;t�m

�
for i = 1�

�i;t�1; �1t; �1;t�1; :::; �1;t�m
�
for i > 1

, (69)

and

Ci = E
�
hith

0
it

�
, (70)

where

a (L) �1t = "1t, (71)

and

(1� �iiL) �it = �i (L) �1t + eit, for i = 2; 3; :::N . (72)

Process f�itg is the large N counterpart of fxitg in the following sense,

xit � �it = Op

�
N�1=2

�
, for any i 2 N. (73)

Note that for any i; �it is a linear stationary process with absolute summable autocovariances.

5.2 Consistency of the Augmented Least Squares Estimator

In what follows we focus on the estimation of the parameters of the non-dominant units, i > 1.

The results for the dominant unit can be derived in a similar manner and to save space are not
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included . We denote the least squares estimator of the vector of unknown coe¢ cients �i as

b�1
m�1

=

0BBBB@
�ba1
�ba2
...

�bam

1CCCCA and b�i
(m+2)�1

=

0BBBB@
b�iib�i0
...b�im

1CCCCA , for i > 1,

where b�ii refers to the augmented least squares (ALS) estimator of the own lag coe¢ cient �ii,b�i`, ` = 0; 1; 2; :::;m, denote the estimators of the �rst m + 1 coe¢ cients in �i(L), and ba` for
` = 1; 2; :::;m denote the estimators of the corresponding coe¢ cients in a(L).

It is convenient to re-write (64) for t = m+ 1;m+ 2; :::; T in matrix notations

xi� = Gi�i + �i�, for i > 1; (74)

where

Gi
(T�m)�(m+2)

=

0BBBB@
g0i;m+1
g0i;m+2
...

g0i;T

1CCCCA , xi�
(T�m)�1

=

0BBBB@
xi;m+1

xi;m+2
...

xi;T

1CCCCA , and �i�
(T�m)�1

=

0BBBB@
�i;m+1

�i;m+2
...

�i;T

1CCCCA . (75)

Hence, b�i = �G0
iGi

��1
Gixi� . (76)

In the general case where �i (L) is not a �nite order polynomial the truncation lag m has to be

selected depending on the available time series data, T; so that omission of the higher order lags

of x1t is asymptotically negligible. We use subscript T to denote this explicit dependence of the

truncation lag on the available time series data in the remainder of this paper, namely we set

mT = m (T ), and consider the following assumptions on the relative expansion rates of N; T and

mT .

ASSUMPTION B1 m3
T =T ! {1, where 0 < {1 <1; as T !1:

ASSUMPTION B2 (N;T )
j!1 at any order.

ASSUMPTION B3 (N;T )
j!1; and T=N ! {2, where 0 < {2 <1.

Remark 2 Assumption B1 gives a su¢ cient condition on the truncation lag mT under which b�i
is consistent and asymptotically normal. Assumption B1 can also be replaced by the following two

conditions:

m2
T =T ! 0, (77)

and

lim
T!1

�mT
p
T = 0 for any 0 < � < 1. (78)
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Condition (78) ensures that mT increases su¢ ciently rapidly so that the omitted variable problem

from truncation of higher order lags is asymptotically negligible. Condition (77) ensures a su¢ cient

degree of freedom to reliably estimate individual coe¢ cients. Under Assumption B1 both of the above

two conditions will be satis�ed.

Identi�cation of �i requires invertibility of G0
iGi, which is postulated in the following assump-

tion.

ASSUMPTION 5 There exist integers T0 2 N and N0 2 N such that for all T � T0; and N � N0,

matrix G0
iGi is invertible.

Let bCi = 1

T
G0
iGi. (79)

Substitute (74) in (76) to obtain

p
T (b�i � �i) = bC�1i G0

i�i�p
T
,

=
�bC�1i �C�1i

� G0
i�i�p
T
+C�1i

G0
i�i�p
T

=
�bC�1i �C�1i

� G0
i�i�p
T
+

+C�1i

�
(Gi �Hi)

0 ei�p
T

+
H0
iei�p
T
+
G0
i�i�p
T
+
G0
i i�p
T

�
, for i > 1, (80)

where

Hi
(T�mT )�(mT+2)

=

0BBBB@
h0i;mT+1

h0i;mT+2
...

h0i;T

1CCCCA , (81)

and

ei�
(T�mT )�1

=

0BBBB@
ei;mT+1

ei;mT+2

...

eiT

1CCCCA , �i�
(T�mT )�1

=

0BBBB@
�i;mT+1

�i;mT+2
...

�iT

1CCCCA ,  i�
(T�mT )�1

=

0BBBB@
 mT ;i;mT+1

 mT ;i;mT+2
...

 mT iT

1CCCCA . (82)

Note that �i� = ei� + �i� + i�, for i > 1, see (67).

We deal with the estimation of in�nite order lag polynomials in a similar way as in Said and

Dickey (1984) or Berk (1974) by selecting the truncation lag, mT , as a suitable function of the

sample size. However, the consistency and the asymptotic distribution of b�i does not automatically
follow from the existing literature, since, aside from the issue of lag truncation, we also need to deal

with the e¤ects resulting from the aggregation of weakly cross sectionally dependent processes in

the IVAR model (1), which is not straightforward. Consistency of b�i is established in the following
theorem.
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Theorem 1 (Consistency) Suppose xt is given by model (1) and Assumptions 1-5, B1, and B2
hold. Then

kb�i � �ik1 p! 0, for any i 2 N, (83)

that is b�i de�ned by equation (76) is a consistent estimator of �i.
5.3 Asymptotic Distribution of b�i
We continue to focus on the estimates b�i for i > 1. Derivation of the asymptotic results for b�1 can
be established in a similar manner.

Theorem 2 (Asymptotic normality) Suppose xt is given by model (1) and Assumptions 1-5, B1,
and B3 hold. Then for any sequence of (mT + 2)�1 dimensional vectors a such that kak1 = O (1),

we have p
T
1

�i
a0C

1
2
i (b�i � �i) d! N (0; 1) , for any i 2 f2; 3; :::g , (84)

where b�i and Ci are de�ned by (76) and (70), respectively, and �2i = V ar (eit). Furthermore, for

any sequence of mT � 1 dimensional vectors b such that kbk1 = O (1), we have

p
T
1

�"1
b0C

1
2
1 (b�1 � �1) d! N (0; 1) , (85)

where b�1 and C1 are de�ned by (76) and (70), respectively, and �2"1 = V ar ("1t).

6 Allowing for Neighborhood E¤ects as well as a Dominant Unit

The following assumption generalizes Assumption 1, and allows for neighborhood e¤ects in addition

to the e¤ects that originate from the dominant unit.

ASSUMPTION 6 (Neighbors and non-neighbors) Let

��1 = S1�1 + �b1, (86)

and

��1;�i = Si�i + �bi, for i = 2; 3; :::; N (87)

where Si, for i = 1; 2; :::; N , are known ki �N matrices that de�ne ki neighbors of unit i, ki < K,

�i is ki � 1 vector of unknown parameters, and the coe¢ cients corresponding to non-neighbors are
characterized by vectors �bi; i = 1; 2; :::; N , and satisfy

k�bik1 <
K

N
, (88)

for any N 2 N; and any i 2 f1; 2; 3; :::; Ng.

Let us denote the ki neighbors of unit i by the ki � 1 vector nit = S0ixt. The non-zero elements
of Si de�ne the neighbors of unit i, and are closely related to the elements of the adjancency matrix
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in the literature on networks. See, for example, Chapter 2 in Jackson (2008). It is assumed that

Si is known and does not vary with N . A familiar example of Si would contain only (0; 1) entries

that selects individual units as neighbors of i. Other more general examples arise if a neighbor of

i is de�ned by a (known) linear combination of other units in the IVAR model. The latter allows

for identi�cation of neighbors via suitable measures of economic proximity such as trade patterns,

or commuting distances. Assumption 6 allows for both possibilities.

Some of the results derived in Section 3 are una¤ected by the introduction of neighbors in the

analysis. For example, the relationship (58) describing the cross section averages continues to hold.

However, large N representations for individual cross section units would change. In the case of

the dominant unit, we have

x1t = �11x1;t�1 + �
0
�1xt�1 + u1t

= �11x1;t�1 + �
0
1n1;t�1| {z }

Neighbors

+ �0b1xt�1| {z }
Non�neighbors

+ "1t +Op

�
N�1=2

�
, (89)

where we have used equation (86) of Assumption 6, and u1t = "1t + Op
�
N�1=2� follows from

Assumption 2. Inequality (88) implies that each of the non-neighbor coe¢ cients in the vector �bi
is O

�
N�1� and therefore we can use relationship (58) to obtain

�0b1xt =
�
�0b1��1 (L)�1

�
x1;t�1 +

�
�0b1��1 (L) r1

�
"1t +Op

�
N�1=2

�
. (90)

Note that the coe¢ cients in the polynomials on the right side of (90) decay exponentially to zero,

uniformly in N . In particular, the following bounds can be derived:����0b1�`�1�1��� � �0b11 �`�11 k�1k1 � K�`,

and similarly ����0b1�`�1r1��� � �0b11 �`�11 kr1k1 � K�`,

where
�`�11 � k��1k`1 � �` under Assumption 4,

�0b11 � N k�b1k1 � K under Assumption

6, and k�1k1 together with kr1k1 are bounded in N under Assumptions 1.a and 2, respectively.

The following large N representation for the dominant unit can now be obtained by substituting

equation (90) in (89):

c� (L)x1t = �
0
1n1;t�1 + b

�
1 (L) "1t +Op

�
N�1=2

�
, (91)

where c� (L) = 1��11L�
�
�0b1��1 (L)�1

�
L2, and b�1 (L) = 1+�

0
b1��1 (L) r1. The invertibility of

b�1 (L), is established in the following lemma.

Lemma 4 Suppose Assumption 4 hold and k�b1k1 � � < 1. Then, polynomial b�1 (L) is invertible

for any N 2 N, with coe¢ cients that decay exponentially to zero, uniformly in N .
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Multiplying equation (91) by the inverse of b�1 (L), we obtain the following representation:

a� (L)x1t + 
0
1 (L) n1;t�1 = "1t +Op

�
N�1=2

�
, (92)

where

 1 (L) = � [b�1 (L)]
�1 �1, and a� (L) = [b�1 (L)]

�1 c� (L) .

Polynomial a� (L) is the counterpart of the polynomial a (L) in the model without neighbors.

Therefore, for N su¢ ciently large the process of the dominant unit can be approximated by an

in�nite order autoregressive distributed lag model in x1t and its neighbors, n1;t�1, with coe¢ cients

that decay exponentially, and hence can be appropriately truncated, in the same way as in Section

5.

Large N representation for the remaining units can be derived similarly. Equation for the unit

i > 1 in the VAR model (1) with neighbors is

xit = �iixi;t�1 + �i1x1;t�1 + �
0
�1;�ixt�1 + uit

= �iixi;t�1 + �i1x1;t�1 + �0ini;t�1| {z }
Neighbors

+ �0bixt�1| {z }
Non�neighbors

+ ri1"1t + eit, for i = 2; 3; :::; N , (93)

where we have used equation (87) of Assumption 6. Assumption about the vector �bi for i =

2; 3; :::; N , is the same as assumption about the vector �b1, which allows us to use equation (90)

again, but with �b1 replaced by �bi, namely

�0bixt = �
0
bi��1 (L)�1x1;t�1 + �

0
bi��1 (L) r1"1t +Op

�
N�1=2

�
. (94)

Substituting this equation for �0bixt�1 in (93) and using (92) to eliminate "1t, we obtain the following

large N representation for the unit i = 2; 3; :::; N ,

xit = �iixi;t�1 + �
0
ini;t�1 + �

�
i (L)x1t + 

0
i (L) n1;t�1 + eit +Op

�
N�1=2

�
, (95)

for i = 2; 3; :::, where

��i (L) = a� (L)
�
ri1 + L�

0
bi��1 (L) r1

�
+ �i1L+

�
�0bi��1 (L)�1

�
L2,

which is the counterpart of the polynomial �i (L) in the model without neighbors, and

 i (L) = �
�
ri1 + L�

0
bi��1 (L) r1

�
[b�1 (L)]

�1 �1.

Note that in the case where the dominant unit does not have any neighbors, ��i (L) reduces to

�i (L). It is also worth noting that lagged values of the dominant unit�s neighbors enter the large

N representation for the non-dominant units. The following proposition summarizes the main

results derived above.

Proposition 2 (Large N representations in the presence of neighbors) Let Assumptions 1.a, 2-4,
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and 6 hold, and k�b1k1 � � < 1. Then, the dominant unit has an in�nite order distributed lagged

representation in terms of its own lagged values as well as the lagged values of its neighbors, as

given by (92). Large N representation for the non-dominant units i > 1 are given by (95), and

in addition to its own lagged and own neighborhood e¤ects, xit also depends on in�nite distributed

lagged functions of the dominant unit and the dominant unit�s neighbors. Only the contemporaneous

value of the dominant unit is included in the large N representation of the non-dominant units.

Asymptotic distribution for the estimation based on the corresponding ALS regressions in the

presence of neighbors can be established in the same way as in Section 5 and will not be pursued

here. We provide below some Monte Carlo evidence in case of neighbors present in the data

generating process.

7 Allowing for Unobserved Common Factors

Unobserved common factors can be introduced into the IVAR model in a number of di¤erent ways.

One possibility is to include unobserved common factors in the errors:

ut = R"t + �f t, (96)

where � is an N �mf matrix of factor loadings, and ft is an mf � 1 vector of unobserved common
factors, assumed to be covariance stationary with zero means and unit variances.7 The number

of factors, mf , is �nite and does not change with N . An alternative option is to introduce the

unobserved common factors directly in the IVAR model, as in

xt � �f t = � (xt�1 � �f t�1) +R"t. (97)

Both these speci�cations lead to the same ALS regressions, namely that unit speci�c regressions

must be augmented by a su¢ cient number of cross section averages and their lags in order to

proxy for the e¤ects of the unobserved common factors. But speci�cation (97) is analytically

simpler to work with and will be adopted in what follows. Let zt = xt � �f t; and apply the large
N representation results obtained so far to zt = �zt�1 + R"t. In particular, abstracting from

neighborhood e¤ects, and using results (59) and (60) but applied to zt, we have

zWt = 'W (L) z1t +Op

�
N�1=2

�
, (98)

where zWt =W
0zt is an mw�1 vector of cross section averages, obtained using the N�mw matrix

of granular weightsW, and

'W (L) =W
0��1 (L) r1a (L) +W

0��1 (L)�1L.

7For the derivation of the asymptotic distribution of the corresponding ALS estimators, fourth moments would
need to be bounded as well.
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Equation (98) implies

A (L)

 
x1t

xWt

!
=
�
�W �'W (L) 01�L

�
ft +Op

�
N�1=2

�
,

where 1� =
�
11; 12; :::; 1mf

�0
is the �rst row of �, and

A (L) =

 
'W (L) 0

0 Imw

!
.

In cases where
�
�W �'W (L) 01�L

�
is invertible, the unobserved common factors can be approx-

imated arbitrarily well by the values of the dominant unit, cross section averages, zWt, and their

lags,

ft = B (L)

 
x1t

xWt

!
+Op

�
N�1=2

�
,

where

B (L) =
�
�W �'W (L) 01�L

��1
A (L) .

A similar relationship can also be derived in the presence of neighborhood e¤ects and unobserved

common factors. Derivations are available from the authors on request.

8 Monte Carlo Experiments

In this section we report some evidence on the small sample properties of the augmented least

squares estimator b�i. The data generating process (DGP) is given by the following stationary
IVAR featuring the dominant unit and augmented by an unobserved common factor.

(xt � ft) = � (xt�1 � ft�1) + ut, (99)

where

ut = R"t = r1"1t + et, (100)

which corresponds to model (1) augmented by one unobserved common factor ft and residuals

correspond to (8) and (20). Our focus is on estimation of the lagged own coe¢ cient in equation for

the non-dominant unit i = 2, namely �22, the lagged neighbor coe¢ cient, �23, and �20 = ��20 = r21

in (61), when  = 0.8 Corresponding ALS estimators for these coe¢ cients are denoted by b�22, b�23,
and b�20, respectively.

The elements of� are generated so that unit 1 is dominant, and there are non-zero neighborhood

8Similar results are also obtained for other cross section units.
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e¤ects. To this end we �rst generate

!ij =

8<:
& ijP

j =2f1;i;i+1g & ij
, for j =2 f1; i; i+ 1g

0, for j 2 f1; i; i+ 1g
,

with & ij � IIDU (0; 1). This ensures that !ij = Op(N
�1), and

PN
j=1 !ij = 1. Individual elements

of � are then generated as follows:

1. (Dominant Unit i = 1) �11 = 0:7, and �1j = �1!1j for j = 2; 3; :::; N , with �1 = 0:1.

2. (Unit i = 2) �21 = 0:1, �22 = 0:5, �23 = 0:1, and �2j = �2!2j for j = 3; 4; :::; N , with

�2 = 0:1.

3. (Remaining units i > 2) �ii � IIDU (0:3; 0:5), �i1 � IIDU (0; 0:1), �i;i+1 � IIDU (�0:2; 0:2),
and �ij = �i!ij for j =2 f1; i; i+ 1g, where �i � IIDU (�0:05; 0:15).

The focus parameters of the dominant unit 1, and unit i = 2 are �xed across all experiments.

The remaining parameters are generated randomly. In all experiments � is generated such that

k�k1 � 0:95, which is a su¢ cient condition for stationarity of the IVAR model.
Two sets of factor loadings are considered,  = 0 (no unobserved common factor) and  6= 0.

Under the latter we set 1 = 1, 2 = �0:5, and the remaining factor loadings are generated
randomly as i � 0:5�ii + IIDN (1; 1) for i = 3; 4; :::; N . The factor loadings are generated to

depend on �ii, so that the robustness of the ALS estimator to this type of dependency can be

evaluated. The common factor ft is generated as

ft = �fft�1 + "ft,

where "ft � IIDN
�
0; 1� �2f

�
, which yields V ar (ft) = 1. We choose relatively persistent common

factor with �f = 0:9. We set e1t = 0 and generate the remaining error terms fe2t; e3t; :::; eNtg from
a stationary spatial process in order to show that our estimators are invariant to the weak cross

section dependence of innovations. The following bilateral Spatial Autoregressive Model (SAR) is

considered.

eit =
ae
2
(ei�1;t + ei+1;t) + �eit, (101)

where �eit � IIDN
�
0; �2�e

�
. As established by Whittle (1954), the unilateral SAR(2) scheme

eit = �e1ei�1;t + �e2ei�2;t + �eit, (102)

with �e1 = �e+�e; �e2 = ��e�e, �e =
�
1�

p
1� a2e

�
=ae, and ��1e =

�
1 +

p
1� a2e

�
=ae, generates

the same autocorrelations as the bilateral SAR(1) scheme (101). The error terms are generated using

the unilateral scheme (102) with 50 burn-in data points (i = �49;�48; :::; 0), and the initializations
e�51 = e�50 = 0. The spatial AR parameter, ae; is set to 0:4, which ensures that the process

feitg is cross sectionally weakly dependent. �2�e = V ar (�eit) is chosen so that the variance of errors
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eit is equal to 0:1.9 "1t � IIDN (0; 0:15) and r11 = 1, which implies that V ar(u1t) = 0:15. The

second element of r1 in (100) is set to r21 = 0:1 and the remaining elements are generated as

ri1 � IIDU (0; 0:2) for i = 3; 4; :::; N .

We consider three di¤erent types of augmentation. In addition to the lagged neighbor unit 3,

the regression for unit i = 2 is augmented by the following set of regressors: (i) the current and

lagged values of the dominant unit, fx1;t�`gmT

`=0, (ii) the simple cross section averages fxt�`g
mT
`=0,

and (iii) fx1;t�`; xt�`gmT

`=0. In all three cases mT is set to the integer value of T 1=3, which we denote

by
�
T 1=3

�
.10 For example, under case (i) the ALS regression for unit i = 2 is speci�ed as:

x2t = c2 + �22x2;t�1 + �23x3;t�1 +

[T 1=3]X
`=0

b1`x1;t�` + �2t. (103)

8.1 Monte Carlo results

We report results for experiments without the unobserved common factor �rst. Table 1 summarizes

the results for the own coe¢ cient �̂22, and Table 2 summarizes the results for the neighbor coe¢ -

cient, �23. Each table gives the bias and the root mean squared error (RMSE) of the estimator as

well as the empirical size and power of tests based on it. The results for �̂23 are a little better but

overall similar to those for �̂22. The bias and RMSE of these estimators decline as N and T are

increased irrespective of the augmentation procedure adopted. This is because in the absence of a

common factor the dominant unit and the cross section averages are asymptotically equivalent and

either set of variables (with long enough lags) are su¢ cient to deal with the cross section depen-

dence and the omitted variable problems in the IVAR model. The augmentation by cross section

averages has the advantage that it works regardless of whether strong cross section dependence is

due to a dominant unit, or due to a di¤erent source such as an unobserved common factor. Full

augmentation by the dominant unit as well as the cross section averages is not necessary in the

absence of a common factor, and yields worse outcomes in terms of RMSEs. See the third panel of

Tables 1 and 2.

The empirical size of the tests for values of T > 50 are also close to the 5 percent nominal level.

For smaller values of T , however, there is a negative bias and the tests are oversized. This is the

familiar time series bias where even in the absence of cross section dependence the LS estimators of

autoregressive coe¢ cients are biased in small T samples. But the size of the tests does not change

much with N , which is in the line with the �ndings reported in CP. Overall, these �ndings suggest

that N need not to be very large for the ALS estimator to work.

Results for b�20 are reported in Table 3. The top panel summarizes the results when the regres-
sion is augmented with fx1;t�`gmT

`=0, as suggested by the theory. In this case the bias and RMSE

of b�20 declines with N and T , and the empirical size is close to the nominal value of the test, very

much in line with the results reported for �̂22 and �̂23. In contrast, the estimates at the bottom

panel of Table 3 that are based on regressions augmented by fx1;t�`; xt�`gmT

`=0, behave less well and

9The variance of errors feitg is given by �2 = (1 + �e2)
��
1� �2e2

�
� �2e1

�
= (1� �e2).

10mT = 2; 3; 4; 4; 5 for T = 25; 50; 75; 100; 200, respectively.
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for a given T the RMSEs deteriorate as N increases. The inclusion of cross section averages lead to

a multicollinearity problem since fx1;t�`gmT

`=0 and fxt�`g
mT
`=0 will be asymptotically equivalent. But

this asymptotic multicollinearity problem does not a¤ect the estimation of �22 and �23.

Results for the experiments with the unobserved common factor are reported in Table 4 (own

coe¢ cient �22) and Table 5 (neighbor coe¢ cient �23).
11 Theory suggests that augmentation by the

dominant unit or by the cross section averages alone is not enough for consistent estimation in the

presence of a dominant unit as well as a common factor, ft. This is con�rmed by the MC results

in Tables 4 and 5, which indeed show substantial biases and signi�cant size distortions in cases

without the full augmentation (the empirical sizes are in the range 17%� 70% for N = T = 200).

The ALS estimator based on the full augmentation is correctly sized for larger values of N and

T and overall its performance is very similar to the experiments without the unobserved common

factor.

9 Concluding Remarks

This paper has extended the analysis of in�nite dimensional vector autoregressive (IVAR) models

by Chudik and Pesaran (2011) to the case where one variable or a cross section unit is dominant in

the sense that it has non-negligible contemporaneous and/or lagged e¤ects on all other units as the

cross section dimension rises without a bound. We showed that the asymptotic normality of the

augmented least squares (ALS) estimator continues to hold once the individual auxiliary regressions

are correctly speci�ed. Satisfactory �nite sample performance was documented by means of Monte

Carlo experiments.

A number of applications of the IVAR model with a dominant unit have already been attempted

in the literature. Holly, Pesaran, and Yamagata (2011) examine the di¤usion of house prices across

di¤erent regions in the UK and consider the possibility that London plays a dominant role in this

process. Bussiere, Chudik, and Mehl (2011) investigate the functioning of the foreign exchange

markets treating the US dollar as a dominant currency, and Chudik and Fratzscher (2011) present

a study of global equity markets where US equity and money markets are treated as dominant.

The paper provides a general framework for dealing with the curse of dimensionality in large

linear stationary dynamic models, when the dominant unit and the neighborhood patterns are

given. Further work is clearly needed on identi�cation of the dominant unit(s), patterns of spatial

or network dependencies, and the role of unobserved common factors. These topics together with

the extension of the analysis to nonstationary IVAR models must be left to future studies.

11Results for b�20 are not reported in this case since only in the absence of common factor, coe¢ cient �20 corre-
sponding to the contemporaneous value of the dominant unit equals r21, as shown in equation (61).
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A Supplementary Lemmas

Lemma A.1 Let  (L) =
P1

`=0  `L
`,  0 = 1 and there exists a real positive constant 0 < � < 1 such that

j `j � �` for any ` 2 N. Then there exists polynomial � (L) =
P1

`=0 �`L
` such that  (L) � (L) = 1,

j�`j �
�
1 +

` (`� 1)
2

�
�` for any ` 2 N, (A.1)

and there also exist real constants K <1; and 0 < �1 < 1 such that

j�`j � K�`1 for any ` 2 N. (A.2)

Proof. We have

�0 = 1,

�1 = � 1,
�2 = � 1�1 �  2,
�3 = � 1�2 �  2�1 �  3,
�4 = � 1�3 �  2�2 �  3�1 �  4.

Note that

j�1j = j 1j ,
j�2j � j 1j j�1j+ j 2j ,
j�3j � j 1j j�2j+ j 2j j�1j+ j 3j ,
j�4j � j 1j j�3j+ j 2j j�2j+ j 3j j�1j+ j 4j ,

and by recursive substitution

j�1j = j 1j ,
j�2j � j 1j j�1j+ j 2j = j 1j

2
+ j 2j ,

j�3j � j 1j j�2j+ j 2j j�1j+ j 3j � j 1j
�
j 1j

2
+ j 2j

�
+ j 2j j 1j+ j 3j ,

j�3j � j 1j
3
+ 2 j 2j j 1j+ j 3j ,

j�4j � j 1j
4
+ 3 j 1j

2 j 2j+ 2 j 1j j 3j+ j 2j
2
+ j 4j .

Suppose that j ij � �i, for any i 2 N, and 0 < � < 1. Then in general

j�sj �

0@1 + s�1X
j=1

j

1A �s,

j�sj �
�
1 +

s(s� 1)
2

�
�s;
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for any s 2 N. Choose a positive real constant � > 0 such that � < 1� �. We have

j�sj �
�
1 +

s(s� 1)
2

�
(1� �)s

�
�

1� �

�s
,

j�sj �
��
1 +

s(s� 1)
2

�
�s2

�
�s1,

where �1 � �= (1� �), �2 � 1� �, and note that 0 < �1 < 1, 0 < �2 < 1. Also,�
1 +

s(s� 1)
2

�
�s2 ! 0; as s!1,

which implies existence of a real constant K <1 such that�
1 +

s(s� 1)
2

�
�s2 < K,

for any s 2 N. It follows that j�sj < K�s1, as desired.

Lemma A.2 Suppose xt is generated according to (1), and Assumptions 1-4, and B2 hold. Then

max
1�i�N

E
�
x2it
�
< K, (A.3)

for any N 2 N, and any t 2 Z, where constant K does not depend on N .

Proof. Taking L2-norm of (40) and using triangle inequality, we obtain

kx1tkL2 = k�1t + #ctkL2 � k�1tkL2 + k#ctkL2 , (A.4)

where �1t = a�1 (L) "1t (see (71)). Noting that E (#ct) = 0, (41) implies

k#ctkL2 = O
�
N�1=2

�
. (A.5)

Since the coe¢ cients of a�1 (L) = c�1 (L) b1 (L) are absolute summable (see Lemma 2), E ("1t) = 0, and

�2"1 = V ar ("1t) is bounded under Assumption 2 (condition (10)), we have

k�1tkL2 < K. (A.6)

Using (A.5) and (A.6) in (A.4), we obtain

E
�
x21t
�
= kx1tk2L2 < K <1, (A.7)

where K does not depend on N .

Now suppose i > 1. Subtracting (72) from (46) yields

(1� �iiL)xit = (1� �iiL) �it + �i (L)#ct + �it, (A.8)

where #ct = x1t � �1t (see (40) and (71)), and �it is given by (48). j�iij � � < 1 by condition (16) of

Assumption 4, and therefore the polynomial (1� �iiL) is invertible for any i 2 f2; 3; :::g. Multiplying (A.8)
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by (1� �iiL)
�1, taking L2 norm and using triangle inequality yields

kxitkL2 =
�it + (1� �iiL)�1 �i (L)#ct + (1� �iiL)�1 �it

L2

� k�itkL2 +
(1� �iiL)�1 �i (L)#ct

L2
+
(1� �iiL)�1 �it

L2

But the coe¢ cients of (1� �iiL)
�1 and �i (L) are absolute summable, see Lemma 3. Using (41) and (52),

noting that E (#ct) = 0; and12

k�itkL2 < K; for any N 2 N, and any i = f2; 3; :::; Ng , (A.9)(1� �iiL)�1 �i (L)#ct
L2
= O

�
N�1=2

�
; and

(1� �iiL)�1 �it
L2
= O

�
N�1=2

�
;

we obtain

E
�
x2it
�
= kxitk2L2 < K for any N 2 N and any i = f2; 3; :::; Ng . (A.10)

Results (A.7) and (A.10) establish (A.3), as desired.

Lemma A.3 Suppose xt is generated according to (1), and Assumptions 1-4, B1, and B2 hold. Then there
exists a constant K <1, which does not dependent on N; mT 2 N, i; j 2 f1; 2; :::; Ng, and s 2 f1; 2; :::;mT g,
such that

E

 
1

T

TX
t=mT+1

xitxj;t�s � E
�
�it�j;t�s

�!2
� K

T
, (A.11)

where �it, for i 2 f2; 3; :::g, is de�ned by equation (72) and �1t is de�ned by (71).

Proof. (A.11) can be established in a similar way to the proof of equations (2.10) and (2.11) in Berk (1974).

Lemma A.4 Suppose Assumptions 1-4, B1, and B2 hold. Then for any p; q 2 f0; 1; 2; :::g, any i 2 f2; 3; :::g,
any N � 1 dimensional vectors �, � and a, such that k�k1 = O (1), k�k = O (1) and kak = O (1), we have

1

T

TX
t=mT+1

�0�t�p�
0�t�q � E

�
�0�t�p�

0�t�q
� L1! 0, (A.12)

1

T

TX
t=mT+1

"1;t�p�
0�t�q

L1! 0, (A.13)

1

T

TX
t=mT+1

�0�t�pa
0"t�q � E

�
�0�t�pa

0"t�q
� L1! 0, (A.14)

1

T

TX
t=mT+1

�1;t�peit
L1! 0, (A.15)

and
1

T

TX
t=mT+1

�i;t�1eit
L1! 0, (A.16)

12Result (A.9) follows from de�nition of stationary process �it (given by (72)) by noting that V ar (eit) is bounded
under Assumption 2 (conditions (10) and (11)), coe¢ cients in polynomial �i (L) are absolute summable (see Lemma
3) and that (A.6) holds.

33



where the convergence is uniform in p, and �t is de�ned by (23).

Proof. Let TN = T (N) and mTN = m (TN ) be any increasing integer valued functions of N satisfying

Assumptions B1 and B2. De�ne the following two-dimensional array13

�Nt =
1

TN
"1;t�p�

0�t�q,

and the non-stochastic array

cNt =
1

TN
,

for any t 2 Z, and any N 2 N. Consider now the triangular array
n
f�Nt=cNt;FNtgTNt=�1

o1
N=1

, where fFNtg
denotes an array of �-�elds that is increasing in t for each N; and �Nt is measurable with respect to FNt.
Using the independence of et = R�1"t and "1t0 for any t; t0 2 Z (see Assumption 2), we have

E

�
�Nt
cNt

j FN;t�n
�

= E

 1X
`=0

�0�`�1et�q�`"1;t�p j FN;t�n

!
,

=

8><>:
0 for p < n

1P
`=`1(n;q)

�0�`�1et�q�`"1;t�p for p � n
,

where

`1 (n; q) = max fn� q; 0g .

Also,

sup
p2f0;1;:::g

E

(�
E

�
�Nt
cNt

j Ft�n
��2)

= �2"1
1P

`=`1(n;q)

�0�`�1R�1E ("t"
0
t)R

0
�1�

0`
�1�,

� &nq,

where

&nq = �2"1 kV ar ("t)k kR�1k2 k�k2
1P

`=`1(n;q)

k��1k2` .

Condition (11) of Assumption 2 implies kR�1k �
p
kR�1k1 kR�1k1 = O (1), �2"1 < K and kV ar ("t)k < K

by condition (10) of Assumption 2, and k��1k �
p
k��1k1 k��1k1 � � < 1 under Assumption 4, condition

(16). Since also k�k = O (1), it follows that (for any �xed q 2 N0)

&0;q < K and &nq ! 0 as n!1.

Therefore, the array f�Nt=cNtg is uniformly bounded in L2 norm, which establishes uniform integrability.

Furthermore, using Liapunov�s inequality, the two-dimensional array f�Nt;FNtg is L1-mixingale with respect
to the non-stochastic array fcNtg. Noting that

lim
N!1

TNX
t=mTN

+1

cNt = lim
N!1

TNX
t=mTN

+1

1

TN
=
TN �mTN

TN
= 1 <1, (A.17)

13Note that �Nt is also a function of p and q but we ommit these subscripts to simplify notations.
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and

lim
N!1

TNX
t=mTN

+1

c2Nt = lim
N!1

TNX
t=mTN

+1

1

T 2N
=
TN �mTN

T 2N
= 0, (A.18)

it follows that the array f�Nt;FNtg satis�es conditions of a mixingale weak law,14 which implies
PTN

t=mTN
+1 �Nt

L1!
0, uniformly in p since the upper bound &nq does not depend on p. This completes the proof of result (A.13).

Result (A.14) is established in a similar fashion as result (A.13). This time we de�ne

�Nt =
1

TN

�
�0�t�pa

0"t�q � E
�
�0�t�pa

0"t�q
��
,

for any t 2 Z, and any N 2 N. Again let fFNtg denote array of �-�elds that is increasing in t for each N
and �Nt is measurable with respect to FNt. We have

E

�
�Nt
cNt

j FN;t�n
�
=

8><>:
1P

`=`2(p;n)

�0�`�1R�1 ["t�p�`a
0"t�q � E ("t�p�`a0"t�q)] for q � n

0 for q < n

, (A.19)

where

`2 (p; n) = max fn� p; 0g .

De�ne

ztpq` =
�
�0�`�1R�1"t�p�`

�
(a0"t�q) . (A.20)

Using (A.20) in (A.19), we obtain

E

(�
E

�
�Nt
cNt

j FN;t�n
��2)

=

8><>:
1P

`=`2(p;n)

1P
h=`2(p;n)

[E (ztpq`ztpqh)� E (ztpq`)E (ztpqh)] for q � n

0 for q < n

.

(A.21)

Note that

E (ztpq`) =

(
0 for ` 6= p� q

�0�`�1R�1V ar ("t)a for ` = p� q
.

This implies that

1P
`=`2(p;n)

E (ztpq`) =

(
�0�p�q�1 R�1V ar ("t�q)a for p� q � max fp� n; 0g

0 p� q < max fp� n; 0g
.

But �0�`�1R�1V ar ("t�q)a
 � k�k k��1k` kR�1k kV ar ("t�q)k kak

< K,

where as before k�k = O (1), kak = O (1), k��1k �
p
k��1k1 k��1k1 � � < 1 (by condition (16) of As-

sumption 4), kR�1k �
p
kR�1k1 kR�1k1 = O (1) (by condition (11) of Assumption 2) and kV ar ("t�q)k =

O (1) (by condition (10) of Assumption 2). It follows that for q � n,

sup
p2f0;1;2;:::g

1P
`=`2(p;n)

E (ztpq`)
1P

h=`2(p;n)

E (ztpqh) < K. (A.22)

14See Theorem 19.11 in Davidson (1994).
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Using similar arguments (and noting that the fourth moment of "it is uniformly bounded in i), it can be

shown that

sup
p2f0;1;2;:::g

1P
`=`2(p;n)

1P
h=`2(p;n)

E (ztpq`ztpqh) < K for q � n. (A.23)

Results (A.21), (A.22) and (A.23) now establish the existence of a non-stochastic array, &nq; such that

sup
p2f0;1;2;:::g

E

(�
E

�
�Nt
cNt

j FN;t�n
��2)

< &nq,

where for a �xed q 2 f0; 1; 2; :::g,
&0q < K and &nq ! 0 as n!1.

Therefore, the array f�Nt=cNtg is uniformly bounded in L2 norm, which establishes uniform integrability.

Furthermore, using Liapunov�s inequality, the two-dimensional array f�Nt;FNtg is L1-mixingale with respect
to the non-stochastic array fcNtg. Noting that equations (A.17)-(A.18) hold, it follows that the array

f�Nt;FNtg satis�es conditions of a mixingale weak law,15 which implies
PTN

t=mTN
+1 �Nt

L1! 0, uniformly in

p since the upper bound &nq does not depend on p. This completes the proof of (A.14).

Results (A.15) and (A.16) can also be established in the similar fashion as result (A.13), but this time

we de�ne �Nt = 1
TN
�1;t�peit to establish result (A.15), and �Nt =

1
TN
�i;t�1eit in order to establish result

(A.16). Result (A.14) can be established in the same way as Lemma 1 in Chudik and Pesaran (2011). This

completes the proof.

Lemma A.5 Let assumptions 1-4, B1, and B3 hold. Then for any i 2 f1; 2; 3; :::g ; any j 2 f2; 3; :::g, any
p; q 2 f0; 1; 2; :::g, and any N�1 dimensional vectors � and �, such that k�k1 = O (1) and k�k1 = O

�
N�1�,

1p
T

TX
t=mT+1

�0�t�p�
0�t�q �

p
{2E

�p
N�0�t�p�

0�t�q

�
L1! 0, (A.24)

1p
T

TX
t=mT+1

�1;t�p�
0�t�q �

p
{2E

�p
N�1;t�p�

0�t�q

�
L1! 0, (A.25)

1p
T

TX
t=mT+1

"1;t�p�
0�t�q

L1! 0, (A.26)

1p
T

TX
t=mT+1

"1;t�p�1;t�q
L1! 0, (A.27)

1p
T

TX
t=mT+1

�0�t�pei;t�q �
p
{2E

�p
N�0�t�pei;t�q

�
L1! 0, (A.28)

and
1p
T

TX
t=mT+1

�1;t�pej;t�q
L1! 0, (A.29)

where the convergence is uniform in p, �t is de�ned by equation (23), et is de�ned by (20), and {2 =
lim(T=N) as (N;T )

j!1.
15See Theorem 19.11 in Davidson (1994).
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Proof. We have

1p
T

TX
t=mT+1

�0�t�p�
0�t�q =

r
T

N

 
1

T

TX
t=mT+1

�p
N�
�0
�t�p�

0�t�q

!
, (A.30)

where pN� =qN k�k1 k�k1 = O (1) . (A.31)

Using now result (A.12) of Lemma A.4 yields

1

T

TX
t=mT+1

b0�t�p�
0�t�q � E [b0�t�p�0�t�q]

L1! 0 uniformly in p, (A.32)

under Assumptions B1 and B2, where b =
�p

N�
�0
, and kbk = O (1) by (A.31). Multiplying (A.32) by

(T=N)1=2, and noting that Assumption B3 is a special case of Assumption B2, where (N;T )
j! 1 at any

rate, and that under Assumption B3, r
T

N
! p

{2 <1,

we obtain
1p
T

TX
t=mT+1

�0�t�p�
0�t�q �

p
{2E

�p
N�0�t�p�

0�t�q

�
L1! 0 uniformly in p,

under Assumptions B1 and B3, as desired. This completes the proof of (A.24). Similarly, result (A.26)

follows directly from result (A.13). Result (A.28) can also be established in a similar way by using (A.14)

and noting that ei;t�q = a0"t�q for a = R0
�1si and that

R0
�1si

 �pkR�1k1 kR�1k1 = O (1) by condition

(11) of Assumption 2.

To establish result (A.27), we make use of equation (30), which implies

�1t = r
0
�1"t + �

0
�1�t�1, (A.33)

where r0�1"t = e1t and the vector ��1 satis�es��11 = O
�
N�1� , (A.34)

by condition (5) of Assumption 1. Using result (A.26) for � = ��1 we have

1p
T

TX
t=mT+1

"1;t�p�
0
�1�t�q

L1! 0 uniformly in p, (A.35)

for any p; q 2 f0; 1; 2; :::g, under Assumptions B1 and B3. Similarly, r�1 satis�es

kr�1k1 = O
�
N�1� , (A.36)

by condition (12) of Assumption 2. Noting that �t reduces to

�t =
1X
`=0

�`�1R�1"t = I�1"t for ��1 = 0 and R�1 = I�1,

where I�1 is identity matrix with the �rst column replaced by zeros, result (A.26) implies (for � = r�1,��1 =
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0 and R�1 = I�1) that

1p
T

TX
t=mT+1

"1;t�pr
0
�1"t�q

L1! 0, uniformly in p, (A.37)

for any p; q 2 f0; 1; 2; :::g, under Assumptions B1 and B3. (A.33), (A.35), and (A.37) now establish (A.27),
as desired.

Result (A.29) is established in a similarly way by making use of (A.28) and (A.33). For � = ��1 (see

(A.34)), (A.28) implies

1p
T

TX
t=mT+1

�0�1�t�pej;t�q �
p
{2E

�p
N�0�1�t�pej;t�q

�
L1! 0 uniformly in p, (A.38)

under Assumptions B1 and B3, where

E
�p

N�0�1�t�pej;t�q

�
=

( p
N�0�1�

q�p
�1 E (et�qej;t�q) for q � p

0 for q < p
, (A.39)

E �pN�0�1�t�pej;t�q�
1
�
p
N
��11 k��1kq�p1 kE (et�qej;t�q)k1 = O

�
N� 1

2

�
,��11 = O

�
N�1� by condition (5) of Assumption 1, k��1kq�p1 � �q�p � 1, for q � p, by condition (16)

of Assumption 4,

kE (et�qej;t�q)k1 � kR�1k1 kR�1k1 kV ar ("t)k1 ,

kR�1k1 kR�1k1 < K by condition (11) of Assumption 2, and kV ar ("t)k1 < K by condition (10) of

Assumption 2. For � = r�1,��1 = 0 and R�1 = I�1, (A.28) implies

1p
T

TX
t=mT+1

r0�1"t�pej;t�q �
p
{2E

�p
Nr0�1"t�pej;t�q

�
L1! 0 uniformly in p, (A.40)

under Assumptions B1 and B3, where

E
�p

Nr0�1"t�pej;t�q

�
=

( p
Nr0�1R�1sj for q = p

0 for q 6= p
, (A.41)

E �pNr0�1"t�pej;t�q�
1
�
p
N kr�1k1 kR�1k1 = O

�
N� 1

2

�
, (A.42)

kr�1k1 = O
�
N�1� and kR�1k1 < K by Assumption 2 (see conditions (12) and (11), respectively). (A.38)-

(A.42) establish (A.29), as desired.

Result (A.25) is also established by making use of equation (A.33). For � = ��1 (noting that ��1
satis�es (A.34)) and for any vector � such that k�k1 = O (1), (A.24) implies

1p
T

TX
t=mT+1

�0�1�t�p�
0�t�q �

p
{2E

�p
N�0�1�t�p�

0�t�q

�
L1! 0 uniformly in p, (A.43)

under Assumptions B1 and B3. Result (A.14) of Lemma A.4 implies, by setting a =
p
Nr�1 and noting that

kak =
p
N kr�1k =

p
N
p
kr�1k1 kr�1k1 = O (1) (see (A.36)) and k�k �

p
k�k1 k�k1 = O (1), we have

1

T

TX
t=mT+1

�0�t�p
p
Nr�1"t�q � E

�
�0�t�p

p
Nr�1"t�q

�
L1! 0 uniformly in p, (A.44)
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under Assumptions B1, and B2. Using the same arguments as in (A.30), it follows from (A.44) that

1p
T

TX
t=mT+1

�0�t�pr�1"t�q �
p
{2E

�
�0�t�p

p
Nr�1"t�q

�
L1! 0 uniformly in p, (A.45)

under Assumptions B1, and B3. (A.33), (A.43) and (A.45) establish (A.25), as desired. This completes the

proof.

Lemma A.6 Suppose that Assumptions 1-4 hold. Then for any i 2 N, any p 2 f0; 1; 2; :::g, and any N � 1
dimensional vector � such that k�k1 = O

�
N�1�,

E
�
s0i�t�p�

0�t�1
�
= O

�
N�1� , (A.46)

and

E (s0i�t�p�1t) = O
�
N�1� , (A.47)

where si is an N � 1 dimensional selection vector with sij = 0 for j 6= i and sii = 1, and �t is de�ned by

equation (23).

Proof. We have

s0i�t�p�
0�t�1 = s

0
i�t�p�

0
t�1� =

1X
`=0

s0i�
`
�1R�1"t�p�`

1X
`=0

"0t�1�`R
0
�1�

0`
�1�. (A.48)

Taking expectations of (A.48) and noting that "t is independently distributed of "t0 for any t 6= t0, we obtain

E
�
s0i�t�p�

0�t�1
�
=

X
`=maxf1;pg

s0i�
`�p
�1 R�1E

�
"t�`"

0
t�`
�
R0
�1�

0`�1
�1 �

� kR�1k1 kR�1k1 k�k1 kV ar ("t)k1
X

`=maxf1;pg

k��1k`�p1 k��1k`�11 ,

where kR�1k1 kR�1k1 = O (1) by condition (11) of Assumption 2, k�k1 = O
�
N�1�, kE ("t"t)k1 =

kV ar ("t)k1 = O (1) by condition (10) of Assumption 2, and k��1k1 � � < 1, k��1k`1 � � < 1 by

condition (16) of Assumption 4. It follows that E
�
s0i�t�p�

0�t�1
�
= O

�
N�1�, as required.

To establish result (A.47), we make use of equation (A.33). We have

E (s0i�t�p�1t) = E
�
s0i�t�pr

0
�1"t

�
+ E

�
s0i�t�p�

0
�1�t�1

�
.

Noting that
��11 = O

�
N�1� by condition (5) of Assumption 1, result (A.46) (for � = ��1) implies

E
�
s0i�t�p�

0
�1�t�1

�
= O

�
N�1�. Furthermore,
E
�
s0i�t�pr

0
�1"t

�
=

(
0 for p > 0

s0iR�1E ("t"
0
t) r�1 for p = 0

,

where

s0iR�1E ("t"
0
t) r�1 � kR�1k1 kV ar ("t)k1 kr�1k1 = O

�
N�1� ,

using the same arguments as in the derivation of (A.46) and noting that kr�1k1 = O
�
N�1� by condition

(12) of Assumption 2. It follows that E (s0i�t�p�1t) = O
�
N�1�, as required.
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Lemma A.7 Suppose xt is given by model (1) and Assumptions 1-4, B1, and B2 hold. Then for any i > 1
we have, bCi �Ci

1

p! 0,

where Ci and bCi are de�ned by (70) and (79), respectively.
Proof. bCi �Ci

1
= max

j2f1;::;mT+2g

mT+2X
`=1

jbcij` � cij`j , (A.49)

where cij` and bcij` denote the (j; `)-th elements of Ci and bCi, respectively. Liapunov�s inequality and Lemma
A.3 in Appendix establish

E jbcij` � cij`j �rE h(bcij` � cij`)2i � K
1p
T
, (A.50)

where K < 1 does not depend on N; mT 2 N, and j; ` 2 f1; 2; :::;mT + 2g. Taking expectations of both
sides of (A.49) and making use of (A.50) yields

E
bCi �Ci

1
� K

�
mT + 2p

T

�
.

But under Assumption B1, m2
T =T ! 0, and hence

bCi �Ci
1

L1! 0. Convergence in L1 norm implies

convergence in probability.

Lemma A.8 Suppose xt is given by model (1) and Assumptions 1-5, B1 and B2 hold. Then for any i > 1
we have, bC�1i �C�1i


1

p! 0,

where Ci and bCi are de�ned by (70) and (79), respectively.
Proof. Let pc =

C�1i 1, qc = bC�1i �C�1i

1
, and rc =

bCi �Ci
1
. Using the triangle inequality and

the submultiplicative property of matrix norm k:k1, we have

qc =
bC�1i �

Ci � bCi�C�1i 1 ,
�

bC�1i 1 rcpc,

�
�bC�1i �C�1i

�
+C�1i


1
rcpc,

� (pc + qc) rcpc,

and (subtracting rcpcqc from both sides)

(1� rcpc) qc � p2crc. (A.51)

Note that rc
p! 0 by Lemma A.7, and pc = O (1) since �it, for i 2 f1; 2; :::; Ng, is a stationary invertible

process with absolute summable autocovariances. Therefore

(1� rcpc)
p! 1, (A.52)

and

p2crc
p! 0. (A.53)
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Results (A.51)-(A.53) imply that qc
p! 0, as desired.16

Lemma A.9 Suppose xt is given by model (1) and Assumptions 1-4, B1 and B2 hold. Then for any i > 1
we have, G0

i i�p
T


1

p! 0,

where  i� is de�ned by (82), and Gi is de�ned by (75).

Proof. Each of the individual elements of G0
i i�=

p
T can be expressed as

1p
T

TX
t=mT+1

xj;t�s mT it,

for a suitable choice of j 2 f1; ig, and s 2 f0; 1; 2; :::;mT g, where  mT it is de�ned by (68). We have

E

����� 1pT
TX

t=mT+1

xj;t�s mT it

����� � 1p
T

TX
t=mT+1

E
��xj;t�s mT it

��
� 1p

T

TX
t=mT+1

h
E (xj;t�s)

2
E
�
 mT it

�2i1=2
� 1p

T

TX
t=mT+1

max
j2f1;2;:::Ng

�
E
�
x2j;t�s

��1=2 1X
`=mT+1

j�i`j
�
E
�
x21;t�`

��1=2
,(A.54)

where the second inequality follows from the Cauchy-Schwarz inequality and the third inequality uses the tri-

angle inequality, which implies
 mT it


L2
�
P1

`=mT+1
j�i`j kx1;t�`kL2 . But by Lemma A.2,maxj2f1;2;:::;NgE

�
x2jt
�
<

K, and (A.54) now yields

E

����� 1pT
TX

t=mT+1

xj;t�s mT it

����� � K
p
T

1X
`=mT+1

j�i`j .

But using Lemma 3 (for 0 < � < 1)

p
T

1X
`=mT+1

j�i`j � K

p
T�mT+1

1� � ;

and under Assumptions B1-B2, and noting that K <1 does not depend on N; or T , we have

p
T

1X
`=mT+1

j�i`j ! 0; as T !1;

and hence G0
i i�p
T


1

L1! 0.

Convergence in L1 norm implies convergence in probability.

16Here we have used the fact that for any real constant 0 < � < 1, the probability of rcpc > � can be made
arbitrarily small by choosing T su¢ ciently large, since rcpc

p! 0.
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Lemma A.10 Suppose xt is generated according to (1) and Assumptions 1-4, B1 and B3 hold. Then for
any i > 1, G0

i�i�p
T


1

p! 0, (A.55)

where matrix Gi is de�ned by (75), and �i� is de�ned by (82). Consider now the case where Assumption B3

is replaced by (weaker) Assumption B2, but the other assumptions are maintained. Then for any i > 1,G0
i�i�
T


1

p! 0. (A.56)

Proof. The �rst element of the (mT + 2)� 1 dimensional vector G0
i�i�=

p
T is

1p
T

TX
t=mT+1

xi;t�1�it. (A.57)

Multiplying equation (27) by c�1 (L) and substituting the outcome into equation (24) for x1;t�1 yields the

following relation for the non-dominant unit.

xit = fi (L) "1t + di (L) c
�1 (L) �1;t�1 + �it, for i > 1, (A.58)

where

fi (L) = Ldi (L) c
�1 (L) b1 (L) + bi (L) . (A.59)

The process �it, as de�ned in (48), can be written as,

�it = �
0
�1;�i�t�1 � gi (L) �1t, (A.60)

where

gi (L) =
�
ri1 + �

0
�1;�i��1 (L) r1L

�
b�11 (L) . (A.61)

Coe¢ cients in the polynomials c�1 (L), b1 (L), and b
�1
1 (L) are absolute summable (see Lemma 2). (B.2)

implies absolute summability of the coe¢ cients in �0�1;�i��1 (L) r1, and using the same arguments as in

proof of Lemma 3, we have

jdi`j =
s0i�`�1�11 < K�`, and bi` =

s0i�`�1r11 < K�`. (A.62)

It follows that polynomials fi (L), di (L) c�1 (L), and gi (L) in (A.58) and (A.60) are absolute summable.

Vector ��1;�i satis�es
��1;�i1 = O

�
N�1� by condition (6) of Assumption 1 and result (A.26) of Lemma

A.5 imply (for � = �0�1;�i, and p = q = 1)

1p
T

TX
t=mT+1

"1;t�1�
0
�1;�i�t�1

L1! 0. (A.63)

Result (A.27) of Lemma A.5 imply (by setting p = 1, and q = 0)

1p
T

TX
t=mT+1

"1;t�1�1t
L1! 0. (A.64)

Noting again that
��1;�i1 = O

�
N�1�, result (A.46) of Lemma A.6 imply (for i = 1, p = 2, and
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� = ��1;�i)

E
�
�1;t�2�

0
�1;�i�t�1

�
= O

�
N�1� . (A.65)

(A.65) and result (A.24) of Lemma A.5 yields (for � = s1, � = �
0
�1;�i, p = 1, and q = 2)

1p
T

TX
t=mT+1

�1;t�2�
0
�1;�i�t�1

L1! 0: (A.66)

Result (A.47) of Lemma A.6 yields (for p = 2 and i = 1)

E (�1;t�2�1t) = O
�
N�1� . (A.67)

(A.67) and result (A.25) of Lemma A.5 imply (for � = s1, p = 0 and q = 2)

1p
T

TX
t=mT+1

�1;t�2�1t
L1! 0. (A.68)

Similarly to (A.66) and (A.68), results (A.24) and (A.25) of Lemma A.5 can be used (for a suitable choice

of �, �, p and q) to show that

1p
T

TX
t=mT+1

�i;t�1�
0
�1;�i�t�1

L1! 0; (A.69)

and
1p
T

TX
t=mT+1

�i;t�1�1t
L1! 0; (A.70)

where we have also used Lemma A.6 (for a suitable choice of p, i and �), which implies

E
�
�i;t�1�

0
�1;�i�t�1

�
= O

�
N�1� , (A.71)

and

E (�i;t�1�1t) = O
�
N�1� . (A.72)

Substituting equation (A.58) for xi;t�1 and de�nition of �it (see (A.60)) in (A.57), and using results (A.63),

(A.64), (A.66), (A.68), (A.69) and (A.70) establish

E

����� 1pT
TX

t=mT+1

xi;t�1�it

�����! 0, (A.73)

where we have used the fact that the coe¢ cients of the polynomials fi (L), di (L) c�1 (L), and gi (L) are

absolute summable. Similarly to proof of result (A.73), Lemma A.5 can be used repeatedly for a suitable

choice of p,q, � and � to show that

max
p2f0;1;2;:::;mT g

E

����� 1pT
TX

t=mT+1

x1;t�p�it

�����! 0, (A.74)

where x1t is given by (40). Results (A.73) and (A.74) complete the proof of (A.55) by noting that convergence

in L1 norm implies convergence in probability. Proof of result (A.56) can be constructed in the same way,

but this time Lemma A.4 is used instead of Lemma A.5 and the expansion rates considered for N and T

under Assumptions B1 and B2.
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Lemma A.11 Suppose xt is generated according to (1), and Assumptions 1-4, B1 and B3 hold. Then for
any i > 1,  (Gi �Hi)

0
ei�p

T


1

p! 0, (A.75)

where Gi and Hi are de�ned by (75), and (81), respectively. Consider now the case where Assumption B3

is replaced by (weaker) Assumption B2, but the other assumptions are maintained. Then for any i > 1, (Gi �Hi)
0
ei�

T


1

p! 0. (A.76)

Proof. Since j�iij < 1 by condition (16) of Assumption 4, the polynomial (1� �iiL)
�1 exists (for any

i = 2; 3; :::; N). Multiplying equation (A.8) by (1� �iiL)
�1 yields

xit � �it = (1� �iiL)
�1
[�i (L)#ct + �it] , for i = 2; 3; :::; N , (A.77)

where �it is given by (A.60). Under Assumptions B1 and B3, and using (A.77) and Lemma A.5 (results

(A.28) and (A.29)), it can be shown that (using a suitable choice of p, q and vector �, similarly as in the

proof of Lemma A.10) for any i > 1 we have

max
j2f1;ig, p2f1;2;:::;mT g

E

����� 1pT
TX

t=mT+1

�
xj;t�p � �j;t�p

�
eit

�����! 0, (A.78)

and

E

����� 1pT
TX

t=mT+1

(x1t � �1t) eit

�����! 0. (A.79)

Noting that

git � hit =
( �

x1;t�1 � �1;t�1; x1;t�2 � �1;t�2; :::; x1;t�mT
� �1;t�mT

�
for i = 1�

xi;t�1 � �i;t�1; x1t � �1t; x1;t�1 � �1;t�1; :::; x1;t�mT
� �1;t�mT

�
for i > 1

,

then (A.78)-(A.79) establish (A.75). Proof of (A.76) is identical, but this time Lemma A.4 is used instead

of Lemma A.5, together with Assumptions B1 and B2.

B Proofs

Proof of Lemma 1.

V ar (a0�t) = kV ar (a0�t)k =

1X
`=0

a0�`�1R�1V ar ("t�`)R
0
�1�

`0
�1a

 ,
� kak2 kR�1k2

1X
`=0

k��1k2` kV ar ("t�`)k . (B.1)

But kR�1k2 � kR�1k1 kR�1k1 = O (1) by condition (11) of Assumption 2,17 kV ar ("t�`)k < K (for any

` = 0; 1; 2; :::) by condition (10) of Assumption 2, kak2 = O
�
N�1�, k��1k � pk��1k1 k��1k1 � � by

17We use the matrix norm inequality kAk �
p
kAk1 kAk1. See Horn and Johnson (1985) for details and other

useful matrix inequalities.
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condition (16) of Assumption 4 and
P1

`=0 k��1k
2` �

P1
`=0 �

2` < K . Hence, kV ar (a0�t)k = O
�
N�1�, as

required.

Proof of Lemma 2. Coe¢ cients of the polynomial c (L) =
P1

`=0 c`L
`, as de�ned by equation (29), satisfy:

c0 = 1, and jc`j =
��s01�`�1�1 �1

�� � �`�1�1

1 k�1k1 for any ` 2 N.18 Conditions (16) and (17) of Assumption

4 postulate that k��1k1 � � < 1 and k�1k1 � � < 1, which implies that jc`j � �` for any ` 2 N. The
invertibility of c (L) and exponential decay of the coe¢ cients in c�1 (L) now directly follow from Lemma

A.1. Exponential decay of the coe¢ cients in c�1 (L) is uniform in N , because � does not depend on N 2 N.
The coe¢ cients of the polynomial b1 (L) =

P1
`=0 b1`L

`, as de�ned by equation (28), satisfy b10 = 1,

and jb1`j =
��s01�`�1r1�� � �`�11 kr1k1 for any ` 2 N. Conditions (16) and (18) of Assumption 4 imply�`�11 kr1k1 � �`, which establishes jb1`j � �` for any ` 2 N. The invertibility of b1 (L) and exponential

decay of the coe¢ cients in b�11 (L) now follows from Lemma A.1. Similarly to c�1 (L), the coe¢ cients of

b�11 (L) exponentially decay uniformly in N 2 N.
Noting that jc`j � �` for any ` = 0; 1; 2; ::, and that the coe¢ cients of b�11 (L) decay exponentially, it

follows that the coe¢ cients of a (L) = b�11 (L) c (L) must also decay at an exponential rate. This completes

the proof.

Proof of Lemma 3. Existence of real positive constants K < 1 and 0 < � < 1 (independent of N)

such that ja`j < K�` was established in Lemma 2. The coe¢ cients of polynomials �0�1;�i��1 (L)�1 and

�0�1;�i��1 (L) r1 satisfy:�0�1;�i�`�1�11 < K�`, and
�0�1;�i�`�1r11 < K�`, (B.2)

where
�0�1;�i1 =

P
j 6=1;i

���ij�� < K by (6) of Assumption 1,
�`�11 � �` < 1 by (16) of Assumption 4,

k�1k1 � � < 1 by (17) of Assumption 4, and kr1k1 = maxi=1;::;N jri1j � 1 by (18) of Assumption 4. Result
(55) now directly follows by noting that linear combinations and products of polynomials with exponentially

decaying coe¢ cients are also polynomials with exponentially decaying coe¢ cients.

Proof of Lemma 4. Let us examine the polynomial b1 (L) �rst.

b1 (L) =
1X
`=0

s01�
`
�1r1L

` = 1 +

 1X
`=0

�0�1�
`
�1r1L

`

!
L

= 1 + �0�1��1 (L) r1L,

where s01r1 = r11 = 1, and s01��1 = �
0
�1. Under Assumption 4, ��1 is any vector that satis�es

��1c �
� < 1. The same condition is assumed to hold for the vector �b1, and therefore the invertibility of the

polynomial b�1 (L) = 1 + �
0
b1��1 (L) r1L now directly follows from Lemma 2.

Proof of Theorem 1. Suppose i > 1. Taking maximum absolute row-sum matrix norms of both sides of

equation (80), we have

kb�i � �ik1 �

�
G0
iGi

T

��1
�C�1i


1

G0
i�i�
T


1

+
C�1i 1� (Gi �Hi)

0
ei�

T


1
+

H0
iei�
T


1
+

G0
i�i�
T


1
+

G0
i i�
T


1

�
,

18We use the submulplicative property of matrix norms, which states that for any matrix norm k:kM and any
square matrices A and B, we have kABkM � kAkM kBkM .
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where
C�1i 1 = O (1) since �it is a stationary invertible process with absolute summable autocovariances.

The desired result (83), for i > 1, now follows using Lemmas A.7-A.11 and noting that kH0
iei�=Tk1

p! 0 by

results (A.15) and (A.16) of Lemma A.4. The consistency of b�1 can be established in a similar manner.
Proof of Theorem 2. Suppose i > 1.pT 1�i a0C 1

2
i (b�i � �i)� 1

�i
a0C

� 1
2

i

H0
iei�p
T


1

�
 1�i a0C 1

2
i


1
�

�
pT (b�i � �i)�C�1i H0

iei�p
T


1
, (B.3)

where
 1
�i
a0C

1
2
i


1
= O (1). Using (80) we have

pT (b�i � �i)�C�1i H0
iei�p
T


1

�

�
G0
iGi

T

��1
�C�1i


1

G0
i�i�p
T


1

+
C�1i 1� (Gi �Hi)

0
ei�p

T


1
+

G0
i�i�p
T


1

�
+
C�1i 1 G0

i i�p
T


1

p! 0, (B.4)

where the convergence follows from Lemmas A.7-A.11. Furthermore,

1

�i
a0C

� 1
2

i

H0
iei�p
T

d! N (0; 1) (B.5)

is a standard time series result, which can be established using the martingale di¤erence array central limit

theorem (Theorem 24.3 of Davidson (1994)) in the same way as Lemma 6 of Chudik and Pesaran (2011).

Equations (B.3)-(B.5) establish result (84), as desired. The asymptotic distribution of b�1 can be established
in a similar manner.
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